Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer.

نویسندگان

  • Masafumi Kumano
  • Junya Furukawa
  • Masaki Shiota
  • Anousheh Zardan
  • Fan Zhang
  • Eliana Beraldi
  • Romina M Wiedmann
  • Ladan Fazli
  • Amina Zoubeidi
  • Martin E Gleave
چکیده

Hsp27 is a stress-activated multifunctional chaperone that inhibits treatment-induced apoptosis and causes treatment resistance in prostate and other cancers. We previously showed that targeted suppression of Hsp27 sensitizes cancer cells to hormone and chemotherapy. However, mechanisms by which Hsp27 confers cell treatment resistance are incompletely defined. Here, we report that Hsp27 protects human prostate cancer cells against proteotoxic stress induced by proteasome inhibition, and that Hsp27 silencing using siRNA or antisense (OGX-427) induced both apoptosis and autophagy through mechanisms involving reduced proteasome activity and induction of endoplasmic reticulum (ER) stress. We found that autophagy activation protected against ER stress-induced cell death, whereas inhibition of autophagy activation following Hsp27 silencing using either pharmacologic inhibitors or atg3 silencing enhanced cell death. Importantly, cotargeting Hsp27 and autophagy by combining OGX-427 with the autophagy inhibitor, chloroquine, significantly delayed PC-3 prostate tumor growth in vivo. These findings identify autophagy as a cytoprotective, stress-induced adaptive pathway, activated following disruption of protein homeostasis and ER stress induced by Hsp27 silencing. Combinatorial cotargeting cytoprotective Hsp27 and autophagy illustrates potential benefits of blocking activation of adaptive pathways to improve treatment outcomes in cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Discovery Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate Cancer

Hsp27 is a stress-activated multifunctional chaperone that inhibits treatment-induced apoptosis and causes treatment resistance in prostate and other cancers. We previously showed that targeted suppression of Hsp27 sensitizes cancer cells to hormone and chemotherapy. However, mechanisms by which Hsp27 confers cell treatment resistance are incompletely defined.Here,we report thatHsp27 protects h...

متن کامل

Cotargeting Androgen Receptor and Clusterin Delays Castrate-Resistant Prostate Cancer Progression by Inhibiting Adaptive Stress Response and AR Stability.

Although androgen receptor (AR) pathway inhibitors prolong survival in castrate-resistant prostate cancer (CRPC), resistance rapidly develops and is often associated with increased stress-activated molecular chaperones like clusterin (CLU) and continued AR signaling. Because adaptive pathways activated by treatment facilitate development of acquired resistance, cotargeting the stress response, ...

متن کامل

Sesterin as a biomolecule

Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...

متن کامل

Monascuspiloin Enhances the Radiation Sensitivity of Human Prostate Cancer Cells by Stimulating Endoplasmic Reticulum Stress and Inducing Autophagy

Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this ...

متن کامل

مروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )

    ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2).  Autophagy is a catabolic pathway for degradation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 2012